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The variational cluster approximation proposed by Potthoff is applied to the calculation of the single-particle
spectral function of the transition-metal oxides MnO, CoO, and NiO. Trial self-energies and the numerical
value of the Luttinger-Ward functional are obtained by exact diagonalization of a TMO6 cluster. The single-
particle parameters of this cluster serve as variational parameters to construct a stationary point of the grand
potential of the lattice system. The stationary point is found by a crossover procedure, which allows to go
continuously from an array of disconnected clusters to the lattice system. The self-energy is found to contain
irrelevant degrees of freedom, which have marginal impact on the grand potential and need to be excluded to
obtain meaningful results. The obtained spectral functions are in good agreement with experimental data.
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I. INTRODUCTION

The theoretical description of compounds containing par-
tially filled 3d, 4f , or 5f shells is a much-studied problem in
solid-state theory. Due to the small spatial extent of these
shells, the Coulomb repulsion between the electrons in the
conduction bands formed from these shells becomes unusu-
ally strong and approximations that rely on a mapping of the
physical electron system onto one of the fictitious free par-
ticles in a suitably constructed effective potential—as is the
case in density-functional theory1 in the local-density ap-
proximation �LDA�—cannot even qualitatively describe the
resulting state. A frequently cited example is the transition-
metal �TM� oxides NiO, CoO, and MnO. Band structure cal-
culations for the paramagnetic phase predict these materials
to be metallic while experimentally they remain insulators
well above their respective Néel temperature. For NiO and
MnO, an insulating ground state can be obtained in the
framework of band theory by introducing antiferromagnetic
order—for CoO, on the other hand, even the antiferromag-
netic ground state is metallic.2 From a comparison of x-ray
photoemission spectroscopy �XPS� and bremsstrahlung iso-
chromat spectroscopy �BIS�, it was found3 that the band gap
predicted by LDA for the antiferromagnetic state is too small
by a factor of �10. Moreover electron spectroscopy shows
that the electronic structure remains essentially unchanged at
the Néel temperature for both NiO �Ref. 4� and CoO.5 In
both compounds there is practically no difference between
the electronic spectra in the antiferromagnetic and paramag-
netic phases. The same holds true for the related compound
NiS where LDA band-structure calculations, on the contrary,
predict that the transition to the magnetically ordered phase
is accompanied by a significant change of the electronic
structure.6

Failure to predict the insulating ground state and the mag-
nitude of the insulating gap is not the only shortcoming of
LDA. In valence-band photoemission spectroscopy �PES�,
all three oxides NiO, CoO, and MnO show a “satellite” at an
energy of �6–8 eV below the valence-band top.5,7,8 The
Fano-like intensity variation with photon energy at the TM
3p→3d threshold identifies this feature as being due to dn

→dn−1 transitions.9 This part of the electronic structure is not

at all reproduced by band-structure calculations, which on
the contrary would predict the dn→dn−1 transitions near the
valence-band top. Finally experimental band structures
measured by angle-resolved photoelectron spectroscopy
�ARPES� show that for all compounds, i.e., NiO, CoO, and
MnO, the TM-derived bands near the valence-band top are
almost dispersionless.5,8,10 This is also in contradiction to
LDA calculations, which predicts band widths of around 2
eV for the TM 3d-derived bands.

Starting with the work of Hubbard,11 a variety of theoret-
ical methods have been invented to deal with this
problem.12–22 Major progress toward a quantitative descrip-
tion of 3dTM oxides has been made by the cluster method
initiated by Fujimori and co-workers,23,24 and van Elp and
co-workers.25–27 This takes the opposite point of view as
compared to band theory, namely to abandon translational
invariance and instead treat exactly—by means of atomic
multiplet theory28,29—the Coulomb interaction in the 3d
shell of a TM ion in an octahedral “cage” of nearest-neighbor
oxygen atoms. The angle-integrated valence-band photo-
emission spectra calculated by this method are in excellent
agreement with experiment.23–27 This is clear evidence that
the atomic multiplets of the partly filled 3d shell—suitably
modified by the crystalline electric field �CEF�—persist in
the solid and play an important part in the physics. On the
other hand due to its “impurity” character, the cluster method
can only give k-independent quantities.

Recently, however, ideas have been put forward to
broaden the correlated ionization and affinity states of finite
clusters into bands.30–32 A particularly elegant way to do
so—the variational cluster approximation �VCA�—has been
proposed by Potthoff.33 Building on field-theoretical work of
Luttinger and Ward,34 who showed that the grand canonical
potential � of an interacting Fermion system is stationary
with respect to variations of the electronic self-energy ����,
Potthoff proposed to generate trial self-energies numerically
by exact diagonalization of finite clusters and use them in a
variational scheme for �. This amounts to finding the best
approximation to the true self-energy of the lattice among the
subset of “cluster representable” ones, i.e., exact self-
energies of finite clusters.

So far the VCA has been applied mainly to simplified
systems such as the single-band Hubbard model.33,35 How-
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ever, the success of the cluster method for TM oxides clearly
suggests applying the VCA also to a realistic model for TM
oxides, thereby using the octahedral clusters introduced by
Fujimori and Minami to generate self-energies. Here we out-
line such a calculation for NiO, CoO, and MnO, in which all
have the rocksalt structure. For simplicity we neglect any of
the lattice distortions observed in the actual compounds as
well as the antiferromagnetic order at low temperature, and
study the ideal rocksalt structure in the paramagnetic phase.
As already mentioned, the single-particle spectra of these
compounds do not change appreciably during the Néel tran-
sition so this is probably a reasonable assumption. A prelimi-
nary study for NiO using the VCA has been published
elsewhere.36

Using clusters containing just a single TM ion implies that
the self-energy is site diagonal, i.e., k independent. The cor-
responding approximation thus is similar to the dynamical
mean-field theory �DMFT� calculations, which have recently
been applied to a variety of compounds.37 The relationship
between DMFT and the VCA has been discussed in detail by
Potthoff,33 and a detailed comparison with recent DMFT cal-
culations for NiO will be presented below.

II. HAMILTONIAN

We start by defining the Hamiltonian, which describes the
correlated transition-metal oxide �TMO� lattice. We use a
linear combination of atomic orbitals �LCAO� parametriza-
tion of the noninteracting part H0. Denoting by di,�,�

† an op-
erator that creates a spin-� electron in the TM3d-orbital �
� �xy ,xz ,yz , . . .� on site i and by pj,�,� annihilates a spin-�
electron in O 2p orbital �� �x ,y ,z� on site j, the single-
particle terms read

H0 = �
i,�,j,�

�
�

�ti,�
j,�di,�,�

† pj,�,� + H.c.� + �
i,�,�

	�di,�,�
† di,�,�

+ �
j,�,�

	ppj,�,�
† pj,�,�. �1�

Here 	�=	d+6Dq for eg orbitals and 	�=	d−4Dq for t2g.
The transfer integrals ti,�

j,� can be expressed in terms of LCAO
parameters �two-center integrals� and the difference Ri−Rj
by using the Slater-Koster tables.38 The Hamiltonian also
contains analogous terms that describe hybridization
between next-nearest neighbors, i.e., O 2p-O 2p and
Ni 3d-Ni 3d. The LCAO parameters and site energies 	 have
been obtained from a fit to an LDA band structure, thereby
closely following the procedure outlined by Mattheiss.39 The
parameters so obtained are listed in Table I. To give an im-
pression about what accuracy can be expected from such a
fit, Fig. 1 shows the actual LDA band structure and the
LCAO fit for CoO. Following Mattheiss39 an O 2s orbital
was included into the basis set in addition to the O 2p and
TM3d orbitals. This turned out to be crucial for a correct fit
of the dispersion of some TM3d-like bands along 
−X. The
energy of the O 2s orbital, 	s, has no particular impact on the
dispersion of the bands near the Fermi level and for simplic-
ity was kept at 14 eV below the O 2p energy. However, the
corresponding LCAO parameter �sd�� was determined by

the fitting procedure. The fit can be improved substantially
by including also nonvanishing overlap integrals between
O 2p and TM3d orbitals; since, however, the VCA needs
well-defined TM3d orbitals to which the self-energy can be
added, these overlap integrals were omitted. The hybridiza-
tion element �dd�� turned out to be meaningful only in com-
bination with these overlap integrals—a fit without overlap
produced a positive value of �dd��—and hence was set to be
zero. By and large the variation of the hybridization integrals

TABLE I. Hybridization integrals and site energies 	 �in elec-
tron volts� obtained by a LCAO fit to paramagnetic LDA band
structures. The site energies have been shifted so as to have 	p=0.

NiO CoO MnO

�pp�� 0.695 0.627 0.542

�pp�� −0.118 −0.111 −0.108

�sd�� −1.210 −1.210 −1.319

�pd�� −1.289 −1.276 −1.275

�pd�� 0.614 0.596 0.587

�dd�� −0.255 −0.274 −0.331

�dd�� 0.060 0.067 0.097

	s −14.000 −14.000 −14.000

	p 0.000 0.000 0.000

	d 2.822 3.400 3.899

10Dq 0.138 0.142 0.069
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FIG. 1. LDA band structure �top� and LCAO fit �bottom� for
CoO.
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along the series NiO→MnO is consistent with the increasing
lattice constant on one hand and the increasing d-shell radius
on the other. The parameters moreover are similar to previ-
ous estimates in the literature.23,25

We proceed to the interaction terms of the Hamiltonian.
The Coulomb interaction within the d shell can be written as

H1 = �

1,
2,
3,
4

�
1
2�g�
4
3�d
1

† d
2

† d
3
d
4

. �2�

Here we have suppressed the site label i and 
= �m ,��,
where m� �−2,−1, . . .2� denotes the z component of orbital
angular momentum. The Coulomb matrix elements
�
1
2�g�
4
3� can be expressed28,29,40 in terms of the three
Racah parameters, A, B, and C. Due to the “breathing” of the
3d radial-wave function, these parameters should be taken
depending on the d-shell occupation.23 This, however, would
create an “implicit” interaction containing terms higher than
quartic in the Fermion operators, and also an interaction be-
tween d and p electrons. This would defeat our formalism
and we therefore do not take the dependence on d-shell oc-
cupation into account. The parameters B and C can be esti-
mated from atomic Hartree-Fock wave functions, and here
we use the values given in Refs. 25–27 for the three materi-
als under study. The parameter A is reduced substantially
from its atomic value by solid-state screening. This param-
eter can in principle be obtained from density-functional
calculations.41,42 In the cluster calculations for TM
oxides,23–27 A is usually treated as an adjustable parameter
and here we do the same. Adjusting A is equivalent to ad-
justing the “Hubbard U”=E�dn+1�+E�dn−1�−2E�dn�, where
E�dn� denotes the energy of a d shell with n electrons. There
is some ambiguity as to what exactly is to be understood by
“the energy of dn”; here we follow Refs. 25–27 and take
E�dn� to be the Coulomb energy of the Hund rule ground
state of the free ion i.e., calculated without CEF splitting.
E�dn�—and hence U—can be expressed in terms of the Ra-
cah parameters,29 and these expressions are listed in Table II.
Another way to define a Hubbard U would be to note that the
average Coulomb energy of the dn multiplets is28,29

E =
n�n − 1�

2
�A −

14

9
B +

7

9
C	 , �3�

which would suggest defining Uav=A− 14
9 B+ 7

9C. This aver-
age Coulomb repulsion, which does not include exchange

effects, may be compared to the values UCDF obtained by
constrained density-functional calculations.41

A second parameter, which is of importance for charge-
transfer systems43 that is usually adjusted to experiment, is
the “bare” d-level energy 	d

� or equivalently the charge-
transfer energy �=E�dn+1L� �−E�dn�. Expressing the E�dn� in
terms of Racah parameters, � can be expressed in terms of
these and the difference ��=	d

�−	p �see Table II�. The values
of 	d

� used in the present calculation are given in Table III as
well. It should be noted that, while the LCAO fit actually
gives an energy for the site energies 	d �see Table I�, these
values already incorporate the Coulomb interaction between
d electrons. Since in our formalism the Coulomb interaction
is described by the Hamiltonian 
Eq. �2��, one would have to
subtract it off to avoid double counting. Namely if one con-
siders the Hubbard U as known, one may estimate the bare
value 	̃d

� from the LDA site energy 	d and the d-level occu-
pancies nd as20

	̃d
� = 	d − 9Uavnd. �4�

The estimates obtained in this way are also listed in Table III.
For NiO and CoO these corrected LDA values are close to
the adjusted parameters 	d

� used in the actual calculation. The
situation is different for MnO but for this compound the U
obtained from ground-state energies also differs strongly
from the multiplet average Uav. The reason for this is the
strong exchange stabilization in the high-spin ground state of
d5 �see Table II� and one may not hope to obtain agreement
between the two estimates for the site energy either. The
reason is simply that a Hubbard U is not uniquely defined in
the presence of strong multiplet splitting. Finally, any Cou-
lomb interaction between electrons that are not in the same
TM3d shell is neglected.

To summarize, the lattice Hamiltonian comprises two
terms: first, the single-particle terms 
Eq. �1�� with the pa-

TABLE II. Energies of the Hund rule ground state E�dn�, and
the resulting values of U=E�dn+1�+E�dn−1�−2E�dn� and �
=E�dn+1L� �−E�dn�, expressed in terms of the Racah parameters and
��=	d

�−	p.

n E�dn� U �

9 36A−56B+28C

8 28A−50B+21C A+B ��+8A−6B+7C

7 18A−28B+14C A+B ��+7A−7B+14C

6 15A−35B+7C A−8B ��+6A−8B+7C

5 10A−35B A+14B+7C ��+5A+7C

4 6A−21B

TABLE III. Racah parameters, bare d-level energy 	d
�, Hubbard

U, and charge-transfer energy � �according to Table II� for the three
materials studied. Also given are the average Hubbard U Uav ac-
cording to Eq. �3�, the Coulomb parameter UCDF from constrained
density-functional calculation �Ref. 41�, the electron number per d
orbital nd as obtained from the LDA calculation, and the estimate
for the d-level energy ẽd

� according to Eq. �4�. All energies are in
electron volts.

NiO CoO MnO

A 8.25 7.2 6.1

B 0.13 0.14 0.12

C 0.60 0.54 0.41

	d
� −62.0 −45.5 −23.3

U 8.38 7.34 10.65

� 7.42 11.48 10.07

Uav 8.51 7.40 6.23

UCDF 8.00 7.80 6.90

nd 0.85 0.76 0.56

ẽd
� −60.53 −45.81 −26.91
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rameters in Table I but with 	d replaced by 	d
� given in Table

III to avoid double counting of the Coulomb interaction in
the d shell. Second the interaction term 
Eq. �2�� with the
Racah parameters A, B, and C in Table III. Let us stress that
the parameters A and 	d

� have been adjusted such that the
insulating gap and binding energy of the satellite come out as
in experiment—as can be seen from Table III. However,
these adjusted values are reasonably consistent with esti-
mates from density-functional calculations. Finally, the value
of the chemical potential was �=5.5 eV for NiO and CoO,
and �=7 eV for MnO.

III. VARIATIONAL CLUSTER APPROXIMATION

Having specified the strongly correlated problem under
discussion, we outline the variational cluster approximation.
This is based on an expression for the grand potential � of
an interacting many-Fermion system derived by Luttinger
and Ward.34 In a multiband system where the Green function
G�k ,��, the noninteracting kinetic energy t�k�, and the self-
energy ��k ,�� for given energy � and momentum k are
matrices of dimension 2n�2n, with n as the number of or-
bitals in the unit cell, it reads44

� = −
1

�
�
k,�

e��0+
ln det
− G−1�k,��� + F���� , �5�

where ��= �2�+1�� /�, with � as the inverse temperature,
are the Fermionic Matsubara frequencies,

G−1�k,�� = � + � − t�k� − ��k,�� , �6�

with � as the chemical potential and the functional F
�� is
the Legendre transform of the Luttinger-Ward functional
�
G�. The latter is defined34 as the sum of all closed linked
skeleton diagrams with the noninteracting Green functions
replaced by the full Green functions. A nonperturbative deri-
vation of a functional with the same properties as � has
recently been given by Potthoff.45 �
G� is the generating
functional of the self-energy �, i.e.,

1

�
�ij�k,��� =

��

�Gji�k,���
, �7�

and F
�� is obtained by Legendre transform to eliminate G
in favor of �:

F
�� = �
G� −
1

�
�
k,�

trace�
G�k,�����k,����� .

By virtue of being a Legendre transform, it obeys

1

�
Gij�k,��� = −

�F

�� ji�k,���
, �8�

and using the identity

�

�Aij
ln det A = �A−1� ji, �9�

which holds for any matrix A with det A�0 as well as the
Dyson Eq. �6�, we find that � is stationary with respect to
variations of �:

��

��ij�k,���
= 0. �10�

The crucial obstacle in exploiting this stationarity property in
a variational scheme for the self-energy � is the evaluation
of the functional F
�� for a given “trial �”. Potthoff’s
solution33 makes use of the fact that, just like �
G�, F
��
has no explicit dependence on the single-particle terms of H
and therefore is the same functional of � for any two sys-
tems with the same interaction part of the Hamiltonian. This
is easily seen from the diagrammatic representation of �
G�
because the expression associated with a given Feynman dia-
gram involves only the interaction matrix elements and the
Green function itself.

In the VCA this independence of F
�� on the single-
particle terms of the Hamiltonian is used to construct trial
self-energies by exact diagonalization of finite clusters and
thereby obtain the exact numerical value of F
��. In a first
step one chooses a so-called reference system, which has the
same interaction part as the lattice problem under study but
consists of disconnected finite clusters. If the interaction
terms are short ranged, which is the reason for keeping only
the Coulomb interaction between electrons in the same d
shell, this can always be achieved by suitable choice of the
single-particle terms. The disconnected finite clusters of the
reference system then are solved by exact diagonalization,
which gives the eigenenergies 	� and wave functions ���� for
all particle numbers in the cluster. Of course this sets some
limit on the size of the clusters. Next, the Green function

G˜��� and grand potential �̃ of the reference system are cal-
culated numerically, and Eq. �5� is reverted to express the
exact numerical value of F
�� in terms of these. This simply
means that the summation of infinitely many Feynman dia-
grams and Legendre transform is done implicitly in the
course of the exact diagonalization of the reference system.
Then, the self-energy ���� of the reference system, which is

readily extracted from the Dyson equation for G˜���, can be
used as a trial self-energy for the lattice system. Therefore
the numerical value of F
�� calculated in the cluster is sim-
ply inserted into the Luttinger-Ward formula �5� for the
grand potential of the physical �i.e., lattice� system. The
variation of ���� is performed by varying the single-electron
parameters—such as hybridization integrals or site
energies—of the reference system.

In applying this procedure one frequently has to evaluate
expressions of the type �the momentum k is suppressed for
brevity�,

S = −
1

�
�

�

e��0+
ln det
− G−1����� . �11�

To evaluate this we closely follow Luttinger and Ward,34 and
first convert the sum into a contour integral,

−
1

�
�

�

g���� →
1

2�i



C0

f���g���d� , �12�

where f��� is the Fermi function and C0 is the standard
contour encircling the singularities of the Fermi function in
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counterclockwise direction. Next we deform the contour so
that it encircles the singularities of the logarithm, which are
all located on the real axis �see the Appendix�. Following
Luttinger and Ward we then use

f��� = −
1

�

d

d�
log�1 + e−��� , �13�

and integrate by parts. Using Eq. �9� we thus obtain

S =
1

2��i



C

d� log�1 + e−���trace��1 −
d����

d�
�G���� ,

�14�

where C is a contour that encircles the singularities of trace
in clockwise fashion. This can now be evaluated by numeri-
cal contour integration. To derive the expression given by
Potthoff, we note the alternative expression

S =
− 1

2��i



C

d� log�1 + e−����
i

1

�i���
��i���

��
,

where �i��� are the eigenvalues of G���. There are two
types of singularities of this expression: �a� zeros of an ei-
genvalue, i.e.,

���� � a��� − ��� → 1
����

�����
�� = 1

�−��
,

and �b� singularities of an eigenvalue, i.e.,

���� �
b�

� − ��

→
1

����
�����

��
= −

1

� − ��

.

Hence

S = −
1

���� log�1 + e−���� − �
�

log�1 + e−����� ,

i.e., the expression derived by Potthoff.33

For the numerical evaluation of S, a slightly different pro-
cedure is more convenient. For Matsubara frequencies ��

with �����max, the respective terms in the sum 
Eq. �11�� are
evaluated directly by computing the eigenvalues of G−1���.
For �����max we switch to a contour integral using Eq. �12�
and deform the integration contour, as indicated in Fig. 2.
Along C1 and C4 the integral is evaluated numerically again
by calculating the eigenvalues of G−1���. Along the positive
real axis, the integrand thereby is cut off by the Fermi func-
tion. Along C2 and C3 we integrate by parts using again Eq.
�13� and deform the two pieces into the short piece C5, which
is possible because the contour encloses no more singulari-
ties of the integrand. It is not possible to integrate by parts
along C1 and C4 because these contours cross the lines—
indicated by dashed lines in Fig. 2—where log�1+e−��� has
branch cuts. The advantage of this procedure is that the re-
sulting integration contour C1−C5−C4 can be kept far from
the singularities of the Green function and self-energy on the
real axis so that the integrand will always be a smooth func-
tion, and a numerical integration with relatively few mesh
points �of order 103� gives accurate results.

IV. REFERENCE SYSTEM

Given the excellent results obtained by the cluster method
for angle-integrated spectra,23–27 it seems natural to use clus-
ters that are equivalent to TMO6 octahedra as reference sys-
tem. More precisely we choose a reference system where
each TM3d orbital d� is coupled to one “ligand” orbital L�,
with these ligands in turn decoupled from each other, and the
interaction within the d shell given by Eq. �2�. The reference
system thus is equivalent to an array of nonoverlapping iden-
tical TMO6 clusters where each ligand L� corresponds to the
unique linear combination of O 2p orbitals on the six nearest
O neighbors of a given TM atom, which hybridizes with the
TM3d� orbital �see Fig. 3�. We write the single-particle
Hamiltonian for a TML5 cluster as

Hsingle = �
�,�

V����d�,�
† L�,� + H.c.�

+ �
�,�


E���d�,�
† d�,� + e���L�,�

† L�,�� . �15�

The variational parameters thus are the hopping matrix ele-

Re ω

Im ω
C1

4C

2C

3C 5C

FIG. 2. �Color online� Integration contour for the numerical
evaluation of S. The dots on the imaginary axis denote the
Matsubara frequencies and the dotted lines are branch cuts of
log�1+e−���. Crosses denote poles of the Green function.

O 2pO 2p

Ni 3d Ni 3d Ni 3d

Ni 3d Ni 3d Ni 3d

L L L L L L

FIG. 3. �Color online� Physical �top� and reference �bottom�
systems. Arrows indicate nonvanishing hybridization. While the
physical system is a true lattice, the reference system is an array of
disconnected clusters. The Coulomb interaction between electrons
in the TM d shell is the same for both systems.
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ments �V��, the ligand energies e���, and the d-level energies
E��� with �� �eg , t2g�; in total we thus have six parameters.
It is convenient to rewrite the site energies in the reference
system as follows:

E�eg� = 	0 − 	1 + 3	2/5 + 	d
�, �16�

E�t2g� = 	0 − 	1 − 2	2/5 + 	d
�, �17�

e�eg� = 	0 + 	1 + 3	3/5, �18�

and

e�t2g� = 	0 + 	1 − 2	3/5. �19�

As shown by Aichhorn et al.35 optimization of the “center of
gravity” 	0 ensures that the electron number obtained by dif-
ferentiating � with respect to � is equal to the result ob-
tained by integrating the spectral function. It should be
stressed here that the VCA necessitates that the chemical
potential � be identical between lattice and reference sys-
tems.

To compute the Green function for the reference system,
all eigenstates ��� with an expectation value ���H−�N���,
which is less than 50 kBT above the minimum value, are
obtained by the Lanczos method. Excited states can be com-
puted by replacing

H → H + E�
�=1

�−1

������

in the Lanczos iteration for the �th eigenstate where E is a
large positive constant. This allows computation of up to 20
low lying states without problems, which turns out to be
quite sufficient for the temperatures studied. The correctness
of the wave functions is checked by computing the expecta-

tion value of the square of the spin ���S�2��� for each eigen-
state and checking that it agrees with an allowed value to
computer accuracy. Also the expectation values of the opera-
tors for C2 and C4 are computed and summed for all states of
one degenerate level, and it is checked that the sums agree
with the known characters of one of the irreducible represen-
tations of the cubic group to computer accuracy. In this way
one can be rather certain that no state is missed and that the
wave functions are accurate. The Green function then is cal-
culated for each ��� by the Lanczos method and the resulting
functions are added with their proper thermal weights. Off-
diagonal elements of the Green function are obtained by a
subtraction procedure.46 It follows from symmetry that the
10�10 Green function is block diagonal and consists of five
2�2 subblocks, whereby the two eg-like blocks and the
three t2g-like blocks are equal. These are inverted and the
self-energy is obtained by the Dyson equation. A good check
for the accuracy of the calculation is provided by the fact that
only the �d ,d� entry of each 2�2 self-energy matrix may
differ from zero. At this point the large distance of the inte-
gration curve from the singularities of G��� �see Fig. 2� turns
out to be beneficial and makes sure that the nonallowed ma-
trix elements of ���� are indeed zero to computer accuracy.

The search for the stationary point of a function of six
variables �i is a difficult task—even more so because the

stationary point is not a global minimum or maximum and is
in fact not even a local extremum but a saddle point �see
below�. This problem has motivated the search for function-
als other than �
��, which take an extremum value at the
physical self-energy.47 We can solve this problem in the fol-
lowing way. However, if we have a set of parameters that is
sufficiently close to the stationary point, we can evaluate the
derivatives �� /��i and �2� /��i�� j numerically, and use the
Newton method to find the point where �� /��i=0. Next,
instead of the true lattice system, we choose our “physical
system” to be a “hybrid system”, which contains both the
O 2p-lattice and the ligands for each TM ion �see Fig. 4�. We
take the TM-O and TM-TM hybridizations to be multiplied
by �1, and the TM-L hybridization by �2. For �1=0 and
�2=1, we therefore have the reference system itself plus a
decoupled O 2p lattice. For this system the exact stationary
point is known—namely the parameters of the reference sys-
tem itself. On the other hand, for �1=1 and �2=0, we have
the physical lattice system plus the decoupled and hence ir-
relevant ligands, and a solution to this system is a solution to
the lattice system itself. That noninteracting and decoupled
orbitals do not influence the stationarity properties of the
remainder of the system follows first from the fact that non-
interacting orbitals do not contribute to F
��, and second
from the property—shown by Luttinger and Ward34—that S
is equal to � for free electrons. Decoupled noninteracting
orbitals thus give an identical constant shift to both S and �
that is independent of the remaining system provided the
parameter sets are independent—which is in fact the case.

In this way we can go continuously from an exactly solv-
able system to the physical lattice system. In practice we
vary the parameters �1 ,�2 in steps of 0.1 and start the New-
ton method using the stationary values of the preceding step
as initial values. When combined with a simple extrapolation
procedure, this yields the stationary point of the lattice in
�10 steps with �2 Newton iterations in each step. Obvi-
ously such a crossover procedure can be formulated for other
applications of the VCA as well.

We next discuss a second important technical point. Hav-
ing found the stationary point, we can calculate the matrix of
second derivatives �2� /��i�� j and diagonalize it. Figure 5
shows a scan of � through the stationary point of CoO along
the principal axes so obtained. There are two important
things to recognize. First, the stationary point is a saddle
point but the above crossover procedure had no problems
finding it. Second there are certain directions in parameter
space where � shows only an extremely weak variation.

O 2pO 2p

2

1

α

α

Ni 3d Ni 3d Ni 3d

L L L L L L

FIG. 4. �Color online� Hybrid system used to find the stationary
point of �.
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This turned out to be true in all other cases studied as well.
This weak variation may either stem from a near invariance
of the self-energy under changes of the cluster parameters or
the change of the self-energy is appreciable but irrelevant in
that it does not change the lattice �. The presence of such
“nearly invariant lines” in parameter space clearly is unde-
sirable in that it may induce numerical instabilities. It may
happen that small changes of � due to, e.g., a slightly wrong
LCAO band structure or even numerical inaccuracies may
drive the stationary point along these lines in parameter
space to compensate for them. To simplify matters the num-
ber of parameters therefore was reduced. Inspection of the
eigenvectors associated with the nearly invariant lines
showed that these were predominantly combinations of the
parameters 	1 and 	3 in Eq. �19�. These parameters have
almost no influence on � and hence were not subject to
variation. The parameter 	1 was set as equal to zero. In the
cluster calculation the value for 	3 would be 2�pp��
−2�pp�� �Ref. 25�; for simplicity the value 	3=1.4 eV was
used for all three compounds.

Including 	1 and 	3 into the set of parameters to be opti-
mized actually turned out to give unsatisfactory results for
the single-particle spectrum. 	1 tended to take on large posi-
tive values whereas 	3 usually took large negative values. As
a net effect this produced spurious photoemission peaks with
very small spectral weight that were split off by one or two
electron volts from the remainder of the photoemission spec-
trum, resulting in too small gaps and poor agreement with
experiment. Clearly this is a feature of the variational cluster
approximation that needs to be clarified. It should be noted
that reducing the number of parameters that are optimized
simply amounts to restricting the space of trial self-energies.
Since optimization of these parameters hardly changes �,
this is similar to restricting the degrees of freedom in a trial
wave function to the most relevant ones. It then seems that
an “overoptimization” of parameters leads to poor results.
On the other hand the inclusion of irrelevant degrees of free-
dom into a variational wave function may also be detrimental
for properties of the wave function other than the ground-
state energy.

Finally, NiO turned out to be a special case. Since the
ground state of d8 in cubic symmetry is t2g

6 eg
2, the hopping

integral V�t2g� has practically no impact on � because it
connects filled orbitals. In fact, derivatives of � with respect
to V�t2g� turned out to be of order 10−10, i.e., well beyond the
numerical accuracy of the whole procedure. V�t2g� was there-
fore kept at 2�pd��, which again is the value expected in the
cluster calculation. In a previous VCA study of NiO,36 a
different approach was chosen. There the hopping integral
V�t2g� was set as equal to zero. This implies that the t2g-like
ligands are irrelevant altogether and can be discarded from
the reference system so that also the parameters E�t2g� and
e�t2g� play no more role. Although slightly different LCAO
and Racah parameters were used in this calculation, the re-
sults obtained in Ref. 36 are very similar to the ones in the
present study; in particular the bands in the valence-band top
are essentially identical.

V. RESULTS

The parameters at the stationary point of � are listed in
Table IV for a temperature of T=150 K. Their dependence
on temperature turns out to be negligible. Figure 6 shows the
temperature dependence of � for CoO.

This can be fitted very well by ��T�=�0−kBT log�12�.
The second term thereby is the entropy due to the degen-
eracy of the 4T1g ground state of d7 in cubic symmetry. In a
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FIG. 5. �Color online� Scans through the stationary point of
CoO. The normalized eigenvectors vi of �2� /��i�� j were multi-
plied by �i.

TABLE IV. Parameters in the Hamiltonian of the reference sys-
tem 
Eqs. �15�–�18�� for which � is stationary at T=150 K �in
electron volts�. Parameters marked by * have not been subjected to
variation �see discussion in Sec. IV�.

NiO CoO MnO

	0 0.373 0.031 0.014

	1 −0.070� −0.070� −0.070�

	2 −0.301 0.266 0.225

	3 1.400� 1.400� 1.400�

V�eg� −2.226 −2.261 −2.302

V�t2g� 1.229� 1.122 1.114
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FIG. 6. �Color online� Grand potential ��T� obtained by the
VCA for CoO.
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nonmagnetic system with a wide gap, this is the expected
behavior of �. This is clearly a trivial result but it should be
noted that, for the discussion of a phase transition to a mag-
netically or orbitally ordered state, the correct description of
this entropy is important because this competes with the en-
ergy gain due to ordering.

Next we consider the resulting self-energy. Figure 7
shows the spectral density of the CoO6 cluster and the self-
energy at the stationary point for T=150 K �all spectra to be
shown in the remainder of the paper refer to the stationary
points at this temperature; the corresponding parameters of
the reference system are listed in Table IV�. Due to the cubic
symmetry of the cluster, only the diagonal elements of the
self-energy are nonvanishing, and these are identical between
all eg and t2g orbitals, respectively. Luttinger has shown48

that the self-energy has a spectral representation of the form

���� = � + �
�

S�

� − ��

, �20�

where the real matrix � is actually the Hartree-Fock potential
and the poles �� are all on the real axis. The spectral density
of the cluster has a well-defined gap around �=0 between a
charge-transfer peak and the upper Hubbard band. The self-
energy for both eg and t2g electrons has a strong central peak
�indicating a pole �� with large residuum S�� in this gap.

Using the Dyson equation, it is easy to convince oneself that
such a strong peak in the self-energy indeed “pushes open” a
gap in the pole structure of the Green function. Several other
prominent peaks create additional gaps in the spectral den-
sity and thus split off the satellite below −9 eV. In addition
there are many small peaks near the top of the valence band.
Since the poles of the Green function are “sandwiched’ be-
tween the poles of the self-energy, we thus expect a large
number of 3d-derived bands with very small dispersion in
this energy range.

Next, we proceed to a comparison of G�k ,�� to experi-
ment and begin with NiO. Figure 8 compares k-integrated
spectral densities at T=150 K to angle-integrated valence-
band photoemission spectra taken by Oh et al.7 at two dif-
ferent photon energies. It is known49 that, with decreasing
photon energy, the intensity of O 2p-derived states increases
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relative to that of TM3d-derived states—the change of the
spectra with photon energy thus allows drawing of conclu-
sions about the character of individual peaks. Moreover, final
states with dn−1 character are enhanced at a photon energy
just above the TM3p→TM3d absorption threshold so that
such energies are particularly suited to identify this type of
final state. Accordingly, at h�=150 eV the experimental
spectrum mostly resembles the d-like spectral density
whereas at h�=67 eV, the states at the valence-band top are
antiresonantly suppressed. Hence O 2p-derived features be-
come more clearly visible and the satellite at −10 eV is reso-
nantly enhanced. Figures 9 and 10 compare the k-resolved
spectral function for momenta along �100� �
→X� and �110�
�
→K� to the experimental band dispersion by Shen et al.10

The spectral density has gap of approximately 4 eV
around the chemical potential. This is consistent with
experiment3 but has of course been achieved by the choice of
A and �. At the top of the photoemission spectrum, E�0,
there is a high-intensity band complex at binding energies
between �−3.5 and �−2 eV, which was shown to consist of
several subpeaks by Shen et al.10 These authors did not ac-
tually resolve the dispersion of the individual subpeaks al-
though the data seem to indicate a weak overall “upward”
dispersion as one moves 
→X, which would be consistent
with theory. Proceeding to more negative binding energy, the
experimental band structure shows a gap of �1 eV, and
then a group of dispersionless bands between −6 and −4 eV.
This is bounded from below by a weakly dispersive band
that resembles one of the O 2p-derived bands. In the angle-
integrated spectrum 
Fig. 8�a��, the topmost of these disper-
sionless bands produces the “shoulder” at −4 eV. The gap
between the topmost band complex and the group of disper-
sionless bands in the theoretical spectra is not as wide as in
experiment but there are clearly several dispersionless bands
in approximately the right energy range. The agreement
would be very good if the peaks at �−3.5 eV in Figs. 9 and
10 were shifted by �0.5 eV to more negative binding en-
ergy. In addition, the O 2p-derived band can be seen clearly.
As can be seen from the band structure in Fig. 1 this band
actually has a saddle point at X—this gives rise to a van
Hove singularity in the angle-integrated spectrum, which
matches very well the peak at �−5.5 eV in Fig. 8�b�. The
sole strongly dispersive feature in the spectrum, namely an
O 2p-derived band at binding energies between −6 eV→
−9 eV, is again well reproduced by theory. Finally the sat-
ellite at binding energies −8 eV→−12 eV consists of at
least two subpeaks, as can be seen in Fig. 8�b� and also in the
ARPES data.

Next we consider CoO. Figure 11 compares the angle-
integrated spectra at different photon energies and the
k-integrated spectral function obtained by the VCA. Figure
12 shows the dispersion along 
→X and ARPES data from
Shen et al.5 and Brookes et al.50 The XPS spectrum for CoO
starts out with a prominent peak at −3 eV followed by three
“humps” at −5, −8, and −12 eV. The VCA gives peaks of
d-like spectral weight at roughly these energies although the
peak at −5 eV is at slightly too negative energy. The PES
spectrum at 40 eV shows additional peaks at −6.5 and
−9 eV, which were interpreted as O 2p derived by Shen et
al.5 These peaks are also reproduced by the VCA. A little

more problematic is the angle-resolved spectrum. Along
�100� the VCA predicts a split peak at the top of the valence
band at −4 eV. This splitting is not seen in experiment; on
the other hand, the spectra were taken at low photon energy
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where the Co 3d states have relatively small weight. There is
another d-derived band at −6 eV, which corresponds to the
second hump in the angle-integrated spectrum. This is
crossed by and mixes with one of the O 2p-derived bands,
which start at 
 at an energy of −5 eV. The presence of
these two crossing bands may explain the “wiggly” nature of
the bands observed experimentally in this energy range. The
presence of more than one band and a possible crossing be-

tween these is clearly seen in the data of Shen et al. Finally
there is the strongly dispersive O 2p-derived band at energies
of around −8 eV. Surprisingly the experimental dispersions
for this band differ somewhat; this may be due to the cross-
ing of this band with the dispersionless Co 3d-derived band
at −7.5 eV, which leads to a hybridization gap in the
O 2p-derived band.

Finally we consider MnO. Figure 13 shows the angle-
integrated photoemission spectra compared to the result from
the VCA. At high photon energy the experimental spectrum
matches well the d-derived density of states. The single-
particle gap and the structure of the valence-band spectrum
are reproduced well. It is interesting to note that, although
both the Racah parameter A and the value UCDF from con-
strained density-functional theory are considerably smaller
for MnO than for NiO �see Table III�, the insulating gap is
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actually considerably larger for MnO than for NiO �cf. Fig.
8�. This is a consequence of the extra exchange stabilization
of the d5 high-spin state �see Table II�, which is automati-
cally accounted for in the VCA calculation.

At a photon energy of 20 eV, the intense peak at −5.5 eV
almost disappears and another large peak at −6.5 eV ap-

pears, which accordingly must have O 2p character. In the
theoretical spectra this is reproduced well; the peak at
−6.5 eV again is due to a van Hove singularity at X. Figure
14 shows the k-resolved spectrum along �100�. Lad and
Henrich8 performed ARPES measurements on MnO but did
not perform any band mapping due to the broad nature of
peaks so an experimental dispersion unfortunately is not
available.

Lastly we discuss the fine structure of the TM3d-derived
bands. This is shown in Fig. 15. The band structures of all
three compounds have a similar structure: at the top of the
band structure, there is a group of dispersive bands that
shows a rough similarity with the upper group of bands in
the LDA band structure �see Fig. 1�, which have mainly
TM3d character. The total width of this band complex is
reduced by a factor of �0.5, as compared to LDA. These
bands have high spectral weight and produce the intense
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peaks at the top of the angle-integrated spectra for NiO and
CoO. Separated from this group of dispersive bands, there is
then a region with many almost dispersionless bands with
relatively low spectral weight. This overall structure can be
understood by considering the spectral representation of the
self-energy 
Eq. �20�� and the equation for the poles of the
Green function,

� + � − 	k − Re ���� = 0,

where we have considered the single-band case for simplic-
ity. Since Re ���� takes any value between � and −� in
between two successive poles �� and ��+1, there is one band
in between any two successive poles of the self-energy. This
implies that the distance between these two successive poles
is an upper bound for the width of this band, which may be
viewed as a kind of correlation narrowing. Moreover, if a
pole �� has only a small residuum, the resulting pole of the

Green function will be almost “pinned” very close to it, as
can be seen repeatedly in Fig. 15. The topmost group of
relatively strongly dispersive bands then is actually above
the topmost pole of ���� in the valence-band region and the
dominant “gap opening peak” in the center of the insulating
gap �see Fig. 7�. Since the separation in energy between
these peaks is large—of the order of the insulating gap—
these bands still have an appreciable width. The similarity
with the LDA band structure is due to the fact that the dis-
persion of these bands is largely due to direct d-d hopping,
which remains operative also when the self-energy is in-
cluded. While the fine structure of the valence-band top is
not really resolved experimentally as yet, at least experiment
puts a quite low upper limit—�0.5 eV along �100�—on the
width of the individual bands. The VCA would be consistent
with that.

The large number of dispersionless bands at more nega-
tive binding energy is produced by the large number of
densely spaced poles of the self-energy. These are in turn the
consequence of the large number of CEF-split multiplet
states in the TMO6 cluster. Interestingly, at least in the case
of NiO where detailed band mapping is available from
ARPES, the experimental band structure is quite consistent
with this overall structure, namely a group of dispersive

-10 -5 0

M
om

en
tu

m
al

on
g

(1
00

)
/I

nt
en

si
ty

(a
.u

.)

Energy relative to Fermi energy (eV)

k=Γ

k=X

O2p-like
Mn3d-like

FIG. 14. �Color online� Spectral function for momenta along

−X in MnO. Lorentzian broadening of 0.05 eV and d-like weight
is multiplied by a factor of two. There are no ARPES results
available.

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

L Γ X W L K Γ

E
ne

rg
y

(e
V

)

t2g
eg

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

L Γ X W L K Γ

E
ne

rg
y

(e
V

)

t2g
eg

FIG. 15. �Color online� Dispersion of the “subpeaks” in the
photoemission spectra of NiO �top� and CoO �bottom�. Also shown
are the energies of the poles of the self-energy.

R. EDER PHYSICAL REVIEW B 78, 115111 �2008�

115111-12



bands at the top of the valence band and essentially disper-
sionless bands at more negative binding energy. The distance
between the dispersive band complex and the dispersionless
bands is underestimated somewhat by VCA.

To conclude we compare the results of the VCA for NiO
with recent LDA�DMFT calculations.21,22 Figure 16 com-
pares the k-integrated spectra and Fig. 17 shows the disper-
sion along �100�. The DMFT results are taken from Yin et
al.,22 which have obtained essentially identical results as
Kunes et al.21 While the k-integrated spectra look similar at
first sight, comparison with the band structure shows that
there are major differences. In the DMFT spectrum the top of
the valence band is formed by a split off peak A with low
spectral weight. This corresponds to the two topmost bands
labeled A in Fig. 17. This form of the density of states is
actually reminiscent of the results of the three-body-
scattering theory of Manghi et al.15 In the VCA spectrum the
top of the valence band is formed by an intense peak A�,
which corresponds to the topmost band complex A� in Fig.
17. The intense peak B in the DMFT spectrum on the other
hand originates from the band B in Fig. 17. The DMFT
bands moreover show a rather obvious correspondence with
the LDA band structure, resulting in bands with quite strong
dispersion. As already noted the VCA differs strongly from
LDA and shows a larger number of bands with several of
them being practically dispersionless, i.e., corresponding to
localized electrons.

Comparing with experiment, the raw data of Shen et al.10

show no indication for the split off bands A with low spectral
weight as predicted by DMFT. With the exception of the
O 2p-derived bands, ARPES moreover shows no indication
of the wide bands predicted by DMFT; rather there is a num-
ber of dispersionless bands as expected on the basis of the
VCA. One may say that there are major differences between
DMFT and VCA so that further experiments might resolve
this discrepancy.

VI. CONCLUSION

To summarize, the variational cluster approximation due
to Potthoff allows combination of the powerful cluster
configuration-interaction method for transition-metal com-
pounds, due to Fujimori and Minami, with the field-
theoretical work of Luttinger and Ward implementing a
variational scheme for the electronic self-energy, and con-
structing an efficient band-structure method for strongly cor-
related electron compounds. As demonstrated above, a real-
istic band structure and the full atomic multiplet interaction
can be incorporated into the Hamiltonian without problems.
The system can be studied at arbitrarily low temperatures
and the Green function can be obtained with arbitrary energy
resolution. The key numerical problem of finding the station-
ary point of the grand potential thereby can be solved effi-
ciently by a simple crossover procedure. It has been shown
that, in the course of varying the self-energy, there may exist
redundant degrees of freedom that leave the grand potential
almost unchanged. Such redundant degrees of freedom can
be eliminated by simply reducing the number of parameters
in the reference system.

The results are quite encouraging in that there is good
agreement between the calculated Green function and elec-
tron spectroscopies, at least to the extent that ARPES data
are available. The good agreement also suggests that the
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FIG. 16. �Color online� k-integrated d-like spectral weight ob-
tained by DMFT �top� from Ref. 22 and by VCA �bottom� com-
pared to XPS data from NiO.
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band structure of NiO, CoO, and MnO is “Coulomb gener-
ated” in that the atomic multiplet structure survives with mi-
nor modifications. All in all the VCA appears to be a prom-
ising tool for the study of realistic models of correlated
electron systems. The possibility to treat the multiplet and
CEF splitting of the various TM3d configurations more or
less exactly should make it possible to address magnetic or
orbital ordering phenomena in transition-metal compounds.
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APPENDIX

We show that ln
det G���� is analytical off the real axis,
where G��� can be either the exact Green function of the
reference system or the approximate Green function from the
VCA. It is sufficient to prove that all eigenvalues of G���
have a nonvanishing imaginary part for � not on the real
axis. This is proved in turn if we show that

�v�G����v� = �
i,j

vi
�Gij���v j

has a nonvanishing imaginary part for any normalized v. For
the exact Green function, we have, using the Lehman repre-
sentation,

�v�G����v� =
1

Z
�
��,�

�C����2

� − �E� − E���
�e−�	� + e−�	��� ,

where 	�=E�−�N� and

C��� = �����
i

vici��� .

It follows that for � in the upper �lower� half plane, all
eigenvalues of G��� have a negative �positive� imaginary
part and accordingly all eigenvalues of G−1��� have a posi-
tive �negative� imaginary part. The imaginary part could only
be zero if all C��� were zero, which is unlikely to occur. A
similar proof has been given previously by Dzyaloshinskii.51

Luttinger has shown that the self-energy ���� has a spectral
representation of the form

���� = g + �
�

S�

� − ��

,

with a real g.48 Since G��� is Hermitian for real �, the
matrices S� are Hermitian as well; moreover it is positive
definite. Namely if one of the matrices S� would have a
negative eigenvalue � then G−1���+ i	� had the eigenvalue
i
	� plus terms that stay finite as 	→0; whereas we have
shown that all eigenvalues for � in the upper half plane have
positive imaginary parts. It follows immediately that

�v�� − �����v�

has a positive �negative� imaginary part for � in the upper
�lower� half plane, which proves that all eigenvalues of the
approximate Green functions that are off the real axis have
nonvanishing imaginary parts as well.
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